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E V A L U A T I N G  T H E  R E S I D U A L  S T R E N G T H  O F  S H E L L S  O F  L A M I N A T E D  

C O M P O S I T E S  W I T H  T H R O U G H - S L I T - T Y P E  D E F E C T S  

A. V. Abramenko and V. N. Maksimenko UDC 539.3 

Composite shells are being used more and more in different areas of technology (for pressure vessels, curved panels 

of aircraft skins, etc.). An analysis of  the experimental studies and past use of  structures made of  polymer composites (plastics 

reinforced with fibers of  glass, carbon, or boron) shows that the damage incurred by such structures is due to not to the working 

loads but to random mechanical effects (shocks imparted during assembly and adjustment, collisions with stones and hailstones, 

etc.), Moreover, damage increases very slowly over the range of working loads [1, 2]. Thus, in contrast to metallic elements, 

the service life of polymeric composite structures is determined mainly by their residual strength. Analytical and experimental 

studies have covered a wide range of problems concerning the failure of shells with crack-like defects (see the survey in [3], 

for example), but the investigation of  this problem for composite materials is progressing relatively slowly, due to a shortage 

of information on the effect on crack resistance of such characteristics as the relative dimensions of  the shell and crack, the order 

in which the layers are arranged, and the type of anisotropy of the monolayers. 

Here, we use the method of integral boundary equations and a strain criterion of  the strength of  laminated polymer 

composites to propose a closed algorithm for calculating the stress state near a defect. We will use the same approach to evaluate 

residual strength for a shell with a system of through slits. We present numerical results illustrating the effect of different 

geometric and physical parameters of the problem on the relative stress intensity factors and critical load. 

1. We will examine an infinite cylindrical shell of radius R and constant thickness 2h composed of uniform anisotropic 

layers arranged symmetrically relative to the middle surface. The shell has a system of through slits of length 2l o (l o ~, h) 
directed at an angle 0 to the coordinate line ot 2 of local orthogonal dimensionless coordinates oqOot 2, referred to the radius of 

the shell R and connected with its middle surface (Fig. 1). The parametric equations of  the slits have the form oq = ~x(),) = 

-rvzX, or2 = ~2(k) = niX, IXl -< Xo -- R-1/o + mT (m = 0, 1 . . . . .  tx - 1), where v = (n, n 2) = (cos 0, sin 0) is aunit 

normal to the left edge of  the slit; T = 2~/# is the period; # is the number of slits. 

Proceeding on the basis of relations from the theory of shallow anisotropic shells with internal stresses [3, 4], we 

represent the components of  the tensor of  the small sWains in the form 

e,~ = e,~ + e ~ (i, j = 1, 2). 

Here, eij are components of the total-sWain tensor; eij ~ are components of the sWain tensor for the material free of stresses; eij e 
are components of  the tensor of the elastic sWains caused by the internal stresses oij. These swains and stresses are connected 

by the generalized Hooke's law for anisotropic bodies. 

We now replace the internal stresses aij by their statically equivalent forces N = {N 1, S, N2} T and moments M = {M1, 

H, M2} r, and instead of  components of the small-strain tensor eij we use components of  the sWain of  the middle surface e = 

{~11, ~12, e-22} T, x -- {xll, 2x12, x22} r (where T denotes transposition). These swains are in turn connected by known relations 

with the displacements of  the middle surface u i = ui(c q,  ot 2) (i = 1, 2), w = w(cx 1, ot 2) and angles of  rotation 0 i = 0i(~x 1, ce 2) = 

0iw/R, a i = a/0cx i (i = 1, 2) [3-5]. 

Using Hooke's law and the above assumptions, we represent the relationship between the forces, moments, and sWains 

of the middle surface in matrix form [4, 5] 

N = Ce', M = Dx'; (1.I) 
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where C and D are the stiffness matrices of the shell. The components of these matrices are connected with the elastic 

characteristics of the layers. 
Without allowance for the surface load, the equilibrium equation of a shell with internal stresses can be written in 

operator form [4] 

F~N + R-tF~IM = 0; (i .3) 

0 ~2 ,  FM= - ~ - 2 0 : 0 2 - - ~  
(i .4) 

Introducing the notation u = {ut, u2, w} T, we rewrite (1.1) as follows with allowance for (1.2) and (1.4): 

N = R-IGNU - Ce~ M = R-2GMu - Dx ~ (1.5) 
G8 = CF~, G u  = DF~I. 

Inserting (1.5) into (1.3), we use the theory of shallow anisotropic shells with internal stresses to obtain a system of 

equations in displacements: 

Lu = RG~,t ~ + G~lx ~ (1.6) 

Here, L = Fr~CFr~ T + R-2FMDFM T is a symmetric differential matrix operator. The particular solution of system (1.6) can 

be written in the form 

1" 
u = L.  (nG~q~ + Gu~) ,  (1.7) 

where L.  is a differential matrix operator whose elements L.ij are algebraic complements of  elements Lij of  the symmetric matrix 
L, while the vector functions ~k = {~i, 'P2, ~3} r and ~ -- {~/q, ~'2, ~3} T satisfy the equations 

A~ = z ~ AV = x ~ A = det II Eli. (1.8) 

We write the eighth-order differential operator h in the form 

A R-2f~A, A A s + R20i, A s 4 4 = = = R.Q.,  f2 = det II c II. (1.9) 

Here, R. 4 = DxlOl 4 + 4Dx6013<92 + 2(Dlz + 2Dss) Ol2a22 + 4D26#1023 + D22Oe4; Q.4 = A22014 _ 2A26a1302 + (A66 + 2A12 ). 
at2a 2 - 2Ax~ala23 + Al:a4; Dij (i, j = 1, 2, 6) are elements of the matrix D; Aij (i, j = 1, 2, 6) are elements of the matrix 

which is the inverse of C [5]. 
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It is evident that the stress state in a shell with a system of slits will be of a T-periodic character. Without loss of 

generality, we will restrict further discussion to the case of a single slit: cq = -n2X, cx 2 = niX, I Xl < Xo. 
The solution of  the equilibrium equation must satisfy the value assigned along the contour of the slit for the boundary 

vector of the generalized (in the Kirchhoff sense) forces and moments [4] 

T = VN + R-~WM; 

V = 
0 0 0 ' 

0 0 0 

(1.10) 

w = 

ni t /2  

-,,~n2 2n~ n~n2 

Ln~O; + 2ntn2a~ 2 (n~n2O; + (n~ - n~) 023 n~a[ + 2nln20: 

(al' = n13t + n2a2, a~ = -n201 + n132). 

(1.11) 

2. We will examine a problem concerning the equilibrium of a cylindrical shell under a specified external load. Equal 

but oppositely directed components of the boundary vector T • = T(~10, ) + nl0 , ~(X) + n20), IX[ < ~o = R-1lo are applied 

to the edges of the slit. We will represent the stress state in the shell as the sum of the main stress state due to the external load 

and the perturbed stress state due to the presence of the slit. We use N ~ and M 1 to represent the vectors of  the generalized forces 

and moments which arise in the shell with a slit due to the external load under assigned boundary conditions (on the slit), while 

N 2 and M 2 will denote the forces and moments in the shell in the absence of  a slit (but with the same external load). Due to the 

linearity of  the problem, we can represent the forces and moments in the shell with the slit as N 1 = N 2 + N, M 1 = M 2 + M, 

where N and M are the vectors of the generalized forces and moments due to the presence of  the slit (the perturbed stress state 

[3]). We assume that the main stress state is known. Furthermore, we will limit ourselves to consideration of those cases in 

which the edges of the'slit  do not come into contact with one another due to deformation. 

Thus, the perturbed stress state on the line of the slit should satisfy the condition 

T § = T -  = f ( ~ l ( k ) ,  ~2(~.)), I k[ ~<) '0=R-l /o,  (2.1) 

where f = T 1 - T 2. The signs + and - denote boundary values on the left and right edges of  the slit. 

In accordance with the above description of a shell with a slit, we assume the existence of  an identical, solid shell with 

internal stress sources (dislocations and disclinations) concentrated on the line of  the slit. Here, we require that the densities of 

these sources be distributed along the slit line in such a way that the stress state coincide with the stress state in the shell with 

the slit. In accordance with (2.1), the forces and moments remain continuous at an arbitrary point of  the shell, while the 

functions describing the displacements u 1, u2, and w and the angles of rotation 01, 02 undergo first-order discontinuities in the 

transition across the slit line. Differentiating them as generalized functions on the basis of  (1.2), we express the components of 

the Strains 8ij 0, Xij 0 through fLulctionals concentrated on the slit line. The densities of the latter are combinations of the jumps 

of the displacements and angles of  rotation [3]: 

: = R -1 (n~ [u;], ~)L (l = 1, 2), 

~02 = R -1 ((n2 [ul] + nl [u21), ;~)L, 

• = _ R - I  ((n, (0~1, ~)L + R -1 (n~ (wl,  0~)L) 

xl~ = - R  -2 ((nt~gt + n202) [w], ~5)L. 

(l = 1, 2) ,  (2.2) 

Here, ~ -- 3(oq, or2) = 3(oq) 8(ot2) is the delta function; If] ffi f+ - f-" is the jump of  the function f associated with the 

transition across the line of  the slit; (f, g)L = ~ f(~l(k), ~2(k)) g(otl -- $1('A), ~ --  ~2(~k)) d ~  is the convolution integral of the 

functions f and g along the line of  the slit [ k [ < X o. Thus, the strains 8ij 0, xij 0 (i, j = 1, 2) correspond to concentrated factors 
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distributed along the slit line in the solid shell. The densities of these factors are combinations of the jumps of  the displacements 
and angles of  rotation. 

We will use the fundamental solution E(~ 1, ot z) of the eighth-order operator z~ from (1.9) [5] and, by virtue of (1.6)- 

(1.9), write the resolvent functions ~(~l, cz2), ~b(eq, ~2) in the form 

~o = R2f~ -1 (~o, E)L, 

or, with allowance for (1.I1), (2.2), in the form 

~o = R2f~ -t (~,  V'E)L, 

= Rf~ -l (x o, E)c 

~p = Rf~ -~ (~,  W'E)L, (2.3) 

where 4, = {R-l[u,],  R- l [u , ] ,  --[0,], -R-I [w]}  T is the vector of the jumps of the generalized (in the Kirchhoff sense) 

displacements and angles of  rotation with the transition across the slit line (the subscripts u and r denote the normal and 
tangential components). 

Using relations (1.5), (1.8), and (2.3), we obtain an integral representation of the vector of  the generalized forces and 

moments for the perturbed state of the shell: 

T = ($,  T.E)L. (2.4) 

Here, T,  = [T,ij] (i, j = 1 . . . . .  4) is a symmetric differential matrix operator with eighth-order partial derivatives: 

T .  = f2 - l  ( R 2 V N . V  T + V N v W  ~ + W M . W  + W M v W ~ ) ,  

N~, = GecL.G,~ - CA, N v = GxL.G,]t, 

M v = R-2GML.G~ - DA, M, = G~tL.G,~,. 

3. We insert (2.4) into boundary condition (2.1) and, reducing the order of the partial derivatives of the operator T, 

so that the integral representation contains no derivatives higher than the seventh order, we construct a system of four singular 

integral equations to determine four unknown functions ~o i (i = 1 . . . . .  4): 

4 1 

f ~i (x) K~i (x - y) dx = Fj (y) (j = 1, 4). (3.1) 
1 3 1 - 1  

Here, ~m(z) = 'I'm'(X); ~O4(Z ) = ~x~4"(~k); Fro(z) = fro(X); F4(z ) = I f4(~k) d~k + C0 (m = 1 . . . . .  3); x = XoZ (Iz[ ~ 1); c0 is 
the constant of  integration. 

The solution of system (3.1) should satisfy the additional limitations [3] 

l 1 

f q)i(x)dx=O ( i =  1,4), f xtpq(x) dx=O, (3.2) 
- 1  - I  

which serve to determine C O and ensure that the displacements and angles of rotation at the vertices of the slit are unambiguous. 

The kernels Kij (i, j = 1 . . . . .  4) have a Cauchy-type singularity, and the singular integrals in (3.1) are taken as the main 

Canchy values. The behavior of  the solutions in the neighborhood of the singular points (the tips of  the sli0 is known [3, 6], 

and the sought functions 9i(x) (i = 1 . . . . .  4) can be represented in the form 

tpi (x) = (I - x)-1/2,t~~ (x) (i = 1, 4), 

where ,:i~ is a new unknown function. This function is continuous and is bounded on the segment I x I < 1. 

We will construct an approximate solution of system (3.1), (3.2) by the method of  mechanical quadratures. This method 

allows us to reduce the initial system of singular integral equations to a system of linear algebraic equations for the determination 

of new unknown functions ~oi~ (i = 1 . . . . .  4) at specified division points of the interval of integration x m = cos((2m - I) • 

~r/2M) (m = 1 . . . . .  M). These functions are the roots of a Chebysbev polynomial of  the first kind TM(x) = cos(M arccos(x)) 

[71: 

146 



k; 

o ~).~ 

Fig. 2 

! 

R o 

2" 

~,eS- 

~,oo 
0 ~t 0 ' 

Fig. 3 

~ MPa 

200 

i I 

o o,2S ~o,m 

Fig. 4 

200- 

1 0 0 -  

I P a  

30 GO ~ d e g  

Fig. 5 

M 4 

~ ~o (x,,,) K, i (x,,, - y,) = ( M / ~ t )  1: i (y,) (r = 1, M - 1), 
m = l i = l  

M M 

y~ ~ (x,,,) = o (, = l, 41, y.  x,,,~o ~ (x,,,) = o. 
m =  1 m= 1 

Here, Yr = cos (r~dM) (r = l, M - 1) are roots of a Chebyshev polynomial of the second kind UM_ 1 = sin(M arccos(x))(1 - 
X 2 ) -  1/2 

0 

The limiting values f i~  (i = 1 . . . . .  4) are calculated by using the Lagrangian interpolation formulas at the 

Chebyshev nodes: 

M 

~o/~ (1) = ( l / M )  ~. ( -1 )  ''+1 ho ~ (x,,) ctg ((2m - 1) ~ /4M) ,  
him1 

M 

~o (-11 = ( l /M)  2 ( -1 )  "§ ~~176 (x,,) tg ((2ra - 1) ~ /4M).  
m = l  

As characteristics of  the stress-strain state of the shell with the slit, we examine the stress-intensity factors [3]: 

K,. = R h'3 lira ( ~  (2p/lo)l /2Ti (Xo + R-Ip ) )  (i = 1 - '~ )  

(Ti(~ o + R- lp)  (i = 1 . . . . .  4) are components of the vector of  the generalized forces and moments (1.10) on the continuation 

of the slit line). With the retention of only the principal terms in (2.4), we can determine their values near the tips of the slit 
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TABLE 1 

M kl o*, blPa 

A 

0 ~-~',-~ �9 ,~ ~ ,  

1,5454179694 37,5390134387 5 

9 1,5821835276 36,6673077758 15 

15 1,5822903898 36,6648330731 45 

by replacing the Green's function E(eq, or2) by its principal value E.(cq, et2): ASEo(eq, c~2) = tS(oq, t~2) (A s is the differential 

operator from (1.9)). 

4. Shown below are results of calculations performed for a cylindrical shell weakened by a circular slit (the normal to 

the contour of  the slit is directed along the line oq). The edges of the slit are free of stresses, while either a constant tensile force 

N10* = P or a constant shearing force S ~ = P is assigned at inf'mity. The edges of  the slit do not come into contact during 

deformation, so we checked for satisfaction of the condition [ul(c~2)] + h[01(ct2)] > 0, 1~21 < Xo when we obtained the 
solution. The calculations were performed for a shell composed of orthotropic monolayers having the elastic characteristics 

E u = 145 GPa, E22 = 9.5 GPa, G12 = 5.2 GPa, u12 = 0.31 (material 1); E u = 255 GPa, E22 = 159 GPa, G12 = 50 GPa, 

v12 -- 0.23 (material 2). 

Figure 2 shows graphs of  the relative stress-intensity factor k 1 = K1/P for an orthotropic shell of material 1 subjected 
to a tensile force N10* = P. The radius of the shell R = 1 m, while the thickness h = 0.01 m. The shell has a periodic system 

/~ = 1; 5; 7; I0 of  circular slits (curves 1-4, respectively). As the number of slits increases, their interaction has a substantial 

effect on k 1. 

Figure 3 shows graphs of  the relative stress-intensity factor k 2 = K2/P in an orthotropic shell of material 2 subjected 

to a sheafing force So* = P. The calculations were performed for shells with a relative thickness h/R = 1/60; 1/30 (curves I 

and 2). It is evident that the value of k 2 depends significantly both on the parameter ko and on the relative thickness of the shell. 

Using the above approach to study the stress-strain state of anisotropic laminated shells with a slit, we can analyze the 

way in which the residual strength of  the shell is affected by such parameters of the problem as the type of external load, the 

dimensions of  the shell and-slit, and the order in which the layers are arranged. As an illustration of  the effect of  slit length and 

shell thickness on residual strength, we present the results of calculations performed for an orthotropic shell of  material 1 with 

a circular slit. The shell was acted upon by the tensile force N10* = P. The calculations were performed using the strain criterion 

in [8]. The validity of  this criterion has been demonstrated experimentally for a wide range of  laminated composites with 

different arrangements of  layers. Figure 4 shows graphs of the critical load o* = Nl*/2h. The principal direction of orthotropy 

coincides with the c~ 1 direction. The radius of the shell R = 1 m, while its thickness 2h = 0.02; 0.002 m (curves 1 and 2). An 

analysis of the graphs shows that the critical load decreases markedly with an increase in the length of the slit and, for large 

slits, also depends on the thickness of the shell. 

Figure 5 shows results of  calculations of the critical load o* of a laminated shell with a circular slit. The shell was 

subjected to a constant tensile force Nio* = P. The calculations were performed for different orientations [0; 5:/3; 90~ of 

monolayers of  the same thickness (the numbers in the brackets denote the angles between the principal directions of  orthotropy 

of the monolayers and the angle eq; the subscript s denotes the symmetry in the location of the monolayers relative to the middle 

surface). The elastic characteristics of  the monolayers correspond to material 1. The radius of the shell R = 1 m, thickness 2h = 

0.02 m, slit length l o = 0.01; 0.02; 0.05; 0.1; 0.2; 0.5 m (curves 1-6). The results of the cadculations show that an increase 

in 3 and slit length is accompanied by a substantial decrease in the critical load. 

In the problems being examined, the singular integral equations can be solved with satisfactory accuracy by a relatively 

coarse subdivision of  the interval of  integration. All of our calculations were performed for M = 5 Chebyshev nodes. When 

necessary, the number o f  points of  integration was increased to M = 9. For M = 5, 9, 15, Table 1 shows the results of 

calculations performed for an orthotropic shell of  material 1 subjected to the tensile force N10* = P (R = 1 m, h = 0.01 m, 

l o = 0.5 m). It is evident that an increase in the number of points from M = 5 to M = 9 improves the accuracy of the results 

2-3%, while computing time increases threefold. At M = 15, computing time increases by the same amount, but the results are 

refined only to the fifth significant digit. 
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The examples presented above allow us to conclude that the proposed method of calculating the stress state and 
evaluating the residual strength of polymeric composite shells with slits is both simple and effective. 
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